Оптикадағы интерференция

Фазалар ығысуы тұрақты және жиіліктері бірдей толкындардың қосылуы жарық толқындарының өзара әрекеттесуіндегі көңіл аударатын жағдай. Мұнда кеңістіктің кейбір нүктелерінде толқындардың қабаттасуынан бір-бірін күшейтетін, ал басқа бір нүктелерінде керісінше бір-бірін әлсірететін интерференция құбылысы байқалады. Cондықтан экранда күңгірт және ашық жолақтар кезектесіп орналасады.

  • Фазалар ығысуы - уақытта периодты бірдей жиілікпен ауысып отыратын, бастапқы екі түрлі айнымалылардың айырмасы. Фазалық ығысу өлшемсіз шама болып табылады және радианмен (градус) немесе переиод бөлшектерімен өлшенуі мүмкін.

Жарықтың интерференциясы механикалық толқындардың интерференциясы сияқты өтеді. Жарықтың минимум (әлсіреу) және максимум (күшею) шарттары  және формулаларымен анықталады. 

Интерференция құбылысын 1675 жылы Томас Юнг Ньютон, одан кейін Юнг және Френель байқаған.  Дененің әр түрлі атомдары бір-біріне байланыссыз жарық шығарады. Сондықтан олардың жиіліктерінің бірдей болуына қарамастан, әр цугтің фазасы әр түрлі. Ал бұл жарықтың фазасы ретсіз өзгеретін электромагниттік толқын екенін көрсетеді. Сонда екі толқынды бір-біріне қосқанда пайда болған қорытқы толқынның берілген нүктедегі амплитудасы да кездейсоқ түрде бір секундта миллион есе (максимум немесе минимум болып) өзгеріп отырады. Жарық түскен бет біздің көзімізге біркелкі жарық түскен беттей болып көрінеді. Сондықтан жарық толқынының интерференциясы тек когерентті толқындар қабаттасқанда ғана пайда болады.

Юнг әдісі

Ағылшын физигі Томас Юнг жарық толқындарының кеңістіктік когеренттігін алды. Ол S жарық көзінің алдына кішкентай саңылауы бар S1 тосқауылды орналастырды. Жарық толқындары ол саңылаудан өтіп, бірдей фазамен бір уақытта екі кішкене S2 және S3 саңылауларға жетеді. Бұл саңылаулар бір-біріне жақын және жарық көзіне қатысты симметриялы орналастырылған 

Сондықтан S2 және S3 саңылаулары бір толқындық бетте жатыр деп есептеуге болады. 

Ньютон сақиналары

Ньютон сақиналары жұқа қабыршақтардағы интерференцияның дербес түрі, ол жұқа қабыршақ қалыңдығының біркелкі өзгеретін жағдайында байқалады. 1675 жылы Ньютон астрономиялық рефрактордың дөңес объективі мен жазық шыны арасындағы жұқа ауа қабатының түсін бақылаған. Ньютон тәжірибесінде тығыз сығылған шыны мен объективтің арасындағы ауаның жұқа қабатының қалыңдығы шыны мен объективтің түйіскен жерінен объективтің сыртқы шетіне қарай біркелкі ұлғая бастайды. Қарапайым есептеу аркылы өткен жарықтың радиусын, мәселен, ақшыл сақинаның радиусын анықтауға болады:

мұндағы r — сақинаның радиусы, R — линза қисығының радиусы, d — жазық шынының бетінен линзаның жарық сынатын бетіне дейінгі арақашықтық.

Экранда тұрақты интерференциялық көрініс — кезектесіп орналасқан күңгірт, ақ жолақтар пайда болады. Қос айнаның жұмыс істеу приндипі де жоғарыдағы тәрізді Z1 және Z2 айналары центрі О нүктесі болатын шеңбердің радиусы болсын дейік. Жарық көзі S шеңбердің бойында орналасқан. Z1 және Z2 айналары жарық сәулесін екіге жіктейді, олар экранның бір А нүктесіне жиналады.

Дереккөз :Физика: Жалпы білім беретін мектептің жаратылыстану-Ф49 математика бағытындағы 11 сыныбына арналған оқулық /С. Түяқбаев, Ш. Насохова, Б. Кронгарт, т.б. — Алматы: «Мектеп» баспасы.

Scroll Up